mayavi2 vtk file problem

classic Classic list List threaded Threaded
3 messages Options
Reply | Threaded
Open this post in threaded view
|

mayavi2 vtk file problem

Scott Webster
Sorry for this totally beginner question I'm sure.  I've generated a
vtk file using matlab, and am trying to visualize it in mayavi.  My
data file contains points, cells, cell_types, and cell_data scalars.

When I import the file into mayavi, the scalars are shown in the "cell
scalars name" box.  However, if I choose any of a variety of modules
that require scalars (e.g. isosurface), mayavi complains "Cannot
contour: No scalars in input data!"  Should I not be able to contour
cell scalars?  If I use the CellToPointData filter, then it seems to
work.

Here's a test file:
http://sewebster.com/16elec1.vtk

Scott Webster, Ph.D.

Coanda Research & Development Corporation
401 - 6741 Cariboo Rd., Burnaby, BC, Canada, V3N 4A3

T: 604-420-0367 x212
M: 778-232-1577
F: 604-420-0368
http://www.coanda.ca
_______________________________________________
Enthought-Dev mailing list
[hidden email]
https://mail.enthought.com/mailman/listinfo/enthought-dev
Reply | Threaded
Open this post in threaded view
|

Re: mayavi2 vtk file problem

Thomas Lecocq
Scott,

I just tried your vtk file and it does show well using Surface :
<img src="" alt="">

or celltopoint then isosurface :
<img src="" alt="">

So, indeed, you need to have points in order to isosurface them. I'm no vtk expert, but I guess nearest neighbour calculations are behind the isosurface, and these require points...

HTH,

Thomas

> Date: Fri, 17 Aug 2012 14:27:17 -0700

> From: [hidden email]
> To: [hidden email]
> Subject: [Enthought-Dev] mayavi2 vtk file problem
>
> Sorry for this totally beginner question I'm sure. I've generated a
> vtk file using matlab, and am trying to visualize it in mayavi. My
> data file contains points, cells, cell_types, and cell_data scalars.
>
> When I import the file into mayavi, the scalars are shown in the "cell
> scalars name" box. However, if I choose any of a variety of modules
> that require scalars (e.g. isosurface), mayavi complains "Cannot
> contour: No scalars in input data!" Should I not be able to contour
> cell scalars? If I use the CellToPointData filter, then it seems to
> work.
>
> Here's a test file:
> http://sewebster.com/16elec1.vtk
>
> Scott Webster, Ph.D.
>
> Coanda Research & Development Corporation
> 401 - 6741 Cariboo Rd., Burnaby, BC, Canada, V3N 4A3
>
> T: 604-420-0367 x212
> M: 778-232-1577
> F: 604-420-0368
> http://www.coanda.ca
> _______________________________________________
> Enthought-Dev mailing list
> [hidden email]
> https://mail.enthought.com/mailman/listinfo/enthought-dev

_______________________________________________
Enthought-Dev mailing list
[hidden email]
https://mail.enthought.com/mailman/listinfo/enthought-dev
Reply | Threaded
Open this post in threaded view
|

Re: mayavi2 vtk file problem

Scott Webster
Thanks for looking into this Thomas.  I've done some more digging myself and it does seem very common for modules to work only with point data.  I actually filed a bug about this for the volume module, which I would have thought should behave differently:


In the meantime though, using CellToPointData seems to work!

Thanks,

Scott Webster, Ph.D.

Coanda Research & Development Corporation
401 - 6741 Cariboo Rd., Burnaby, BC, Canada, V3N 4A3

T: 604-420-0367 x212
M: 778-232-1577
F: 604-420-0368




On Tue, Aug 28, 2012 at 1:33 PM, Thomas Lecocq <[hidden email]> wrote:
Scott,

I just tried your vtk file and it does show well using Surface :


or celltopoint then isosurface :


So, indeed, you need to have points in order to isosurface them. I'm no vtk expert, but I guess nearest neighbour calculations are behind the isosurface, and these require points...

HTH,

Thomas

> Date: Fri, 17 Aug 2012 14:27:17 -0700
> From: [hidden email]
> To: [hidden email]
> Subject: [Enthought-Dev] mayavi2 vtk file problem

>
> Sorry for this totally beginner question I'm sure. I've generated a
> vtk file using matlab, and am trying to visualize it in mayavi. My
> data file contains points, cells, cell_types, and cell_data scalars.
>
> When I import the file into mayavi, the scalars are shown in the "cell
> scalars name" box. However, if I choose any of a variety of modules
> that require scalars (e.g. isosurface), mayavi complains "Cannot
> contour: No scalars in input data!" Should I not be able to contour
> cell scalars? If I use the CellToPointData filter, then it seems to
> work.
>
> Here's a test file:
> http://sewebster.com/16elec1.vtk
>
> Scott Webster, Ph.D.
>
> Coanda Research & Development Corporation
> 401 - 6741 Cariboo Rd., Burnaby, BC, Canada, V3N 4A3
>
> T: <a href="tel:604-420-0367%20x212" value="+16044200367" target="_blank">604-420-0367 x212
> M: <a href="tel:778-232-1577" value="+17782321577" target="_blank">778-232-1577
> F: <a href="tel:604-420-0368" value="+16044200368" target="_blank">604-420-0368
> http://www.coanda.ca
> _______________________________________________
> Enthought-Dev mailing list
> [hidden email]
> https://mail.enthought.com/mailman/listinfo/enthought-dev

_______________________________________________
Enthought-Dev mailing list
[hidden email]
https://mail.enthought.com/mailman/listinfo/enthought-dev



_______________________________________________
Enthought-Dev mailing list
[hidden email]
https://mail.enthought.com/mailman/listinfo/enthought-dev